Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Two distinct ultra-thin Ge1−xSnx (x ≤ 0.1) epilayers were deposited on (001) Si substrates at 457 and 313 °C through remote plasma-enhanced chemical vapor deposition. These films are considered potential initiation layers for synthesizing thick epitaxial GeSn films. The GeSn film deposited at 313 °C has a thickness of 10 nm and exhibits a highly epitaxial continuous structure with its lattice being compressed along the interface plane to coherently match Si without mismatch dislocations. The GeSn film deposited at 457 °C exhibits a discrete epitaxial island-like morphology with a peak height of ∼30 nm and full-width half maximum (FWHM) varying from 20 to 100 nm. GeSn islands with an FWHM smaller than 20 nm are defect free, whereas those exceeding 25 nm encompass nanotwins and/or stacking faults. The GeSn islands form two-dimensional modulated superlattice structures at the interface with Si. The GeSn film deposited at 457 °C possesses a lower Sn content compared to the one deposited at lower temperature. The potential impact of using these two distinct ultra-thin layers as initiation layers for the direct growth of thicker GeSn epitaxial films on (001) Si substrates is discussed.more » « less
An official website of the United States government
